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Abstract. Enhanced functional integration in modern electron devices requires an accurate modeling of energy
transport in semiconductors in order to describe high-field phenomena such as hot electron propagation, impact
ionization and heat generation in the bulk material. The standard drift-diffusion models cannot cope with high-
field phenomena because they do not comprise energy as a dynamical variable. Furthermore for many applications
in optoelectronics one needs to describe the transient interaction of electromagnetic radiation with carriers in
complex semiconductor materials and since the characteristic times are of order of the electron momentum or
energy flux relaxation times, some higher moments of the distribution function must be necessarily involved.
Therefore these phenomena cannot be described within the framework of the drift-diffusion equations (which
are valid only in the quasi-stationary limit). Therefore generalizations of the drift-diffusion equations have been
sought which would incorporate energy as a dynamical variable and also would not be restricted to quasi-stationary
situations. These models are loosely speaking called hydrodynamical models. One of the earliest hydrodynamical
models currently used in applications was originally put forward by Blotekjaer [1] and subsequently investigated
by Baccarani and Wordeman [2] and by other authors [3]. Eventually other models have also been investigated,
some including also non-parabolic effects [4—6, 8—20]. Most of the implemented hydrodynamical models suffer
from serious theoretical drawbacks due to the ad hoc treatment of the closure problem (lacking a physically
convincing motivation) and the modeling of the production terms (usually assumed to be of the relaxation type and
this, as we shall see, leads to serious inconsistencies with the Onsager reciprocity relations). In these lectures we
present a general overview of the theory underlying hydrodynamical models. In particular we investigate in depth
both the closure problem and the modeling of the production terms and present a recently introduced approach
based on the maximum entropy principle (physically set in the framework of extended thermodynamics [21, 22]).
The considerations and the results reported in the paper are exclusively concerned with silicon.

Sommario. L'estrema miniaturizzazione dei moderni dispositivi elettronici richiede una accurata modellizzazione
del trasporto di energia nei semiconduttori al fine di descrivere effetti di alti campi quali elettroni caldi, ionizza-
zione da impatto e generazione di calore nel materiale. | modelli standard tipo drift-diffusion non possono trattare
fenomeni di alto campo perelrion comprendono I'energia tra le variabili di campo. Inoltre in molte applicazioni

in opto-elettronica si ha bisogno di descrivere I'interazione transiente di radiazione elettromagnetica con i portatori
di carica in mezzi semiconduttori complessi e, dal momento che i tempi caratteristici sono dell’'ordine dei tempi
di rilassamento del momento o dell'energia, alcuni momenti di ordineafity della funzione di distribuzione
devono essere necessariamente inclusi. Quindi questi fenomeni non possono essere descritti nel'ambito delle
equazioni drift-diffusion (che sono valide solo nel limite quasi-stazionario). Pertanto sono state cercate gener-
alizzazioni delle equazioni drift-diffusion in modo da includere I'energia quale variabile dinamica e la cuivalidit
non sia ristretta a situazioni quasi-stazionarie. Questi modelli sono chiamati in senso generico modelli idrodi-
namici. Uno dei primi modelli idrodinamici, di uso corrente nelle applicazierstato sviluppato da Blotekjaer

[1] e successivamente investigato da Baccarani e Wordeman [2] e da altri autori (si vedano le referenze

* Most part of the article has been presented as lectures at Summer School on Industrial Mathematics, Instituto
Superior Tecnico, Lisboa, Portugal, June 1999.
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in [3]). Sono stati investigati anche altri modelli, alcuni di questi includenti anche effetti di non parabolicit”
[4-6, 8-20]. La maggior parte dei modelli idrodinamici implemenéatiffetta da inconvenienti di tipo teorico

dovuti al trattamento ad hoc del problema della chiusura (senza convincenti motivazioni fisiche) e della modell-
izzazione dei termini di produzione (usualmente assunti di tipo rilassamento, fatto che, come vedremo, comporta
serie inconsistenze con le condizioni di recipraadi’'Onsager). In questa trattazione presenteremo una rassegna
generale della teoria alla base dei modelli idrodinamici. In particolare investigheremo in dettaglio il problema della
chiusura sia per i flussi che per i termini di produzione e presenteremo un approccio, introdotto recentemente,
basato sul principio di massima entropia (fisicamente sviluppato nell’ambito della termodinamica estesa [21, 22]).
Le considerazioni e i risultati riportati nell'articolo riguarderanno esclusivamente il silicio.

Key words: Continuum model, Extended thermodynamics, Microelectromechanical systems, Monte—Carlo method,
Electromagneto-fluids.

1. Carrier Transport in Semiconductors

In this chapter a general review of fundamental features of semiconductor physics which are
essential for describing carrier transport is presented. Charge carriers in semiconductors move
under the effect of a periodic crystal potential, due to the periodically spaced atomic nuclei,
and to the self-consistent potential due to the charged carriers themselves. First we introduce
briefly the concept of Bravais lattices and of the Brillouin zone. Then we recall the Bloch
theorem for the dynamics of an electron inside a perfect crystal lattice, the band structure,
and a heuristic derivation of the Boltzmann—Poisson system for the one-electron distribution
function. Finally some important results concerning the H-theorem and null space problem of
the collision operator are critically reviewed.

1.1. ENERGY BAND STRUCTURE IN SEMICONDUCTORS

Crystals can be described in terms of Bravais lattices [23], which are the set of vectors of the
form

L ={ia1+ jaz +las, i, j, 1 € Z},

whereas, ap, as are primitive lattice vectorsZ being the set of relative integers. The recip-
rocal latticeL of the Bravais latticd. is defined by

L ={ia*+ ja®+1d% i, j,1 € Z}
with the reciprocal lattice vectors', a?, a® defined by
a;-a’ = 2718{.
A connected subsé C R2 is called aprimitive cellof the lattice if:

1. The volume of3 equals|a; - (az x a3z)|.
2. The whole spac®? is covered by the union of translates®by the lattice vectors.

B is said to be the first Brillouin zone if it is the Wigner-Seirg primitive cell of the reciprocal
lattice L. It consists of those points which are closer to the origin than to any other paint of

The quantum mechanical dynamics of an electron in the periodic potential of the crystal
lattice is governed bBloch’s theorem
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THEOREM. Consider an electron whose motion is governed by the potértigenerated by
the ions located at the points of the crystal latticeThe Schivdinger equation iy = £,
with the HamiltonianH given by

hZ

2m,
h being the Planck constant divided By, m, the electron mass in the vacuum andhe

absolute value of the electron charge.
The bounded eigenstates have the form

H=— A—eVL,

U (X) = exp(ik - X)ug(x) with x e R3
and
u(X+X) =up(x) with XelL.

One obtains a second order self-adjoint elliptic problem posed on a primitive cell of the
crystal latticeL. It is possible to prove [23] the existence of an infinite sequence of eigenpairs
(energy — wave vector)

EK), up (x), e N,
N being the set of non-negative integers. From the periodicity condition
Y (x+ X) = exp(ik - X)¥ (x),

with x € R3, X e L, it follows that the set of eigenfunctiong and the energie§ (k) are
identical for any two wave vectors which differ by a reciprocal lattice vector. Therefore one
can constrain the wave vectiorto the Brillouin zoness.

The functiong; = & (k) on the Brillouin zone describes the I-th energy band of the crystal
[23-25].

Semiconductors are characterized by a sizable energy gap between the valence and the
conduction bands, which are almost fully filled at thermal equilibrium. Upon thermal excit-
ation electrons from the valence band can jump to the conduction band leaving behind holes
(in the language of quasi-particles). Therefore the transport of charge is achieved through both
negatively charged (electrons) and positively charged (holes) carriers.

The energy band structure of crystals can be obtained at the cost of intensive numerical
calculations (and also semiphenomenologically) by the quantum theory of solids [23]. How-
ever, in order to describe electron transport, for most applications, a simplified description is
adopted which is based on a simple analytical model.

In silicon electrons which contribute mainly to the charge transport are those with energy
close to the lowest conduction band minima. In the Brillouin zone this corresponds to six
equivalent ellipsoidal valleys along the main crystallographic directioag about 85% from
the center of the first Brilloiun zone, near the X points. For this reason these are termed as
X-valleys.

In the parabolic band and effective mass approximation the energy curve is approximated
by a parabola near the minimum of each valley. Then if we denoté the energy of the
considered conduction band measured from the band minimum, we have

_ h2|k|2

£ ;
M*

(1)
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with k assumed to vary in alR®. m* is the effective electron mass (for siliceri = 0.32m,,
with me the electron mass in vacuum) aikl the crystal momentum

A more appropriate analytical approximation, which takes into account the non-parabolicity
at high energy, is given by the Kane dispersion relation

27,2

Ek)[L+a&()] = % k e R®, (2)

whereq is the non-parabolicity parameter (for Silican= 0.5 eV for each X-valley).
In the Monte Carlo simulations the anisotropic version of (1) and (2) are also used

2 2 2 2 2 2
A A A

* * * *
2 | m m; 2 [ mj my

wherem; andm; are the longitudinal and the transverse effective electron masses.
The electron velocity (k) in a generic band depends on the enefgypeasured from the
conduction band minimum by the relation

1
k) = =V\E.
v(k) o VK

Explicitly we get for parabolic band
. Bk

v s (3)
m
while in the approximation of the Kane dispersion relation
: hk'
- . 4
VT L+ 20E(0)] @

1.2. THE SEMICLASSICAL LIOUVILLE EQUATION

In principle the motion of an ensemble &felectrons could be obtained in a quantum frame-
work by solving the Scladinger equation for & -electron wave function. However, this many
body problem is computationally prohibitive even in the classical case. A rather accurate way
to overcome the problem is of resorting to a probabilistic description in a semiclassical kinetic
framework. As in classical gas dynamics, under the assumption that external forces (electric
field E®Y) are almost constant over a length comparable to the physical dimensions of the
wave packet describing the motion of an electron for an ensemhbleeiéctrons belonging

to the same energy band with wavevectkrsi = 1, ..., N, it is possible to show that the
semiclassical Liouville equation for the joint probability densitgx; - - - Xy, K1 -+ - Ky, 1)

9 1
8_]:+Zv(ki)'VXff_ EeEEXt'Vki f=0

must be satisfied. Then by proceeding as in the classical theory one obtainigrdmehy
BBGKY of equationsnd, under the usual assumptions [26] (low correlations, separation
between long range and short range forces, etc.), one obtains formabtheassical Viasov
equation

af

1
Sy TV Vf — —eE-Vif =0
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for the one patrticle distribution functiory (x, k, ¢). Here the electric fieldE(x, 7) is the sum
of the external electric field and the self-consistent one due to the long range electrostatic
interactions.

1.3. THE BOLTZMANN—POISSON EQUATIONS

The above description of electron motion is valid for an ideal perfectly periodic crystal. Real
semiconductors cannot be considered as ideal periodic crystals for several reasons. In fact
strict periodicity is destroyed by:

e doping with impurities (which is done in order to control the electrical conductivity);
o thermal vibrations of the ions off their equilibrium positions in the lattice.

These effects can be taken into account in a perturbative way, by describing the interaction
of the electrons with the lattice of ions as being only approximately periodic. The weak
deviations from periodicity are treated as small perturbations of the background periodic ion
potential. In particular the effect of the thermal vibrations of the ions on the electron dy-
namics can be described quantum mechanicallycagtering with quasi-particles (phonons)
representing the thermal lattice vibratians

The perturbations from the strict periodicity (which can be interpreted as scattering effects)
will obviously affect the semiclassical Liouville equation. Formally these effects are taken into
accountby introducing a non-zero right hand side in the semiclassical Vlasov equdtian
is, it is assumed that the influence of the scattering can be described by a non-vanishing RHS
of the transport equation. In this way one obtains shmiclassical Boltzmann equation for
electrons in the conduction band in semiconductors

of of eE' of

vl .
or TV 0T T

whereC[ f] represents the effects due to scattering with phonons, impurities and with other
electrons.

The electric field which is calculated by solving the Poisson equation for the electric
potentialg

__%9
Ei - 8xi ) (6)
€Ap = —e(Np — Na —n), (7)

Np and N, being the donor and acceptor density, respectively. These are fixed ions implanted
in the semiconductors and their densities depend only on the posiids.the electron
number density

n= d’k.
/B !

The Equations (5)—(7) constitute the Boltzmann—Poisson system that is the basic semi-
classical model of electron transport in semiconductors.

1.4. SATTERING MECHANISMS

The main scattering mechanisms in a semiconductor are the electron—phonon interaction,
the interaction with impurities, electron—electron scatterings and interaction with stationary
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imperfections of the crystal as vacancies, external and internal crystal boundaries. In many
situations the electron—electron collision term can be neglected since the electron density is not
too high. However, in the case of high doping electron—electron collisions must be taken into
account because they might produce sizable effects. Retaining the electron—electron collision
term greatly increases the complexity of the collision operator on the RHS of the semiclassical
Boltzmann equation. In fact the collision operator for the electron—electron scattering is a
highly nonlinear one, being quartic in the distribution function.

After a collision the electron can remain in the same valley (intravalley scattering) or be
drawn in another equivalent valley (intervalley scattering). In silicon the allowed electron—
phonon scattering can be summarized as follows:

e scattering with intravalley acoustic phonon (elastic),
e scattering with intervalley acoustic phonons (inelastic),
e scattering with non-polar optical phonons (inelastic);

the values of the electron acoustic—phonon deformation potential and of the deformation
potential constants as well as the silicon bulk constants are given in [24]. For the sake of
completeness we summarize the physical parameters in Tables 1 and 2.

The form of the collision operatdat| f] for each type of scattering mechanism is

Clfl= /B[P(k’, k) f(K)L = f(K) = Pk, K) f(K)(L— fKN]AK (8)

The first term in (8) represents the gain and the second one the loss. The terniskl
account for the Pauli exclusion principlB(k, k') is the transition probability from the state
k to the statek’.

Under the assumption that the electron gas is dilute the collision operator can be linearized
with respect tof and becomes

Clfl= /B [P(K',K) f(K) = Pk, K) f(K)] K" 9
At equilibrium the electron distribution must obey the Fermi—Dirac statistics

c -1
fea= [exp(_kBTL> - 1:| ,

kg being the Boltzmannn constant afidbeing the lattice temperature which will be taken as
constant.

Table 1. Values of the physical parameters used for silicon

me  Electron rest mass .9095x 10~28g

m*  Effective electron mass 0.22,

T,  Lattice temperature 30K

po Density 2.33g/cr

Vg Longitudinal sound speed .8 x 10° cm/sec

84 Acoustic-phonon deformation potential 9eV
Non-parabolicity factor 0.5evt

€ Relative dielectric constant 11.7

€o  Vacuum dieletric constant 8.8510718 C/V um




Hydrodynamical Modeling in Semiconducto255

Table 2. Coupling constants and phonon ener-
gies for the inelastic scatterings in silicon

A Z; ho(meV) DK(10PV/cm)

1 1 12 0.5
2 1 18.5 0.8
3 4 19.0 0.3
4 4 47.4 20
5 1 61.2 11
6 4 59.0 20

In the dilute case, one can consider the Maxwellian limit of the Fermi—Dirac distribution

&

In both cases from the principle of detailed balance [26] it follows that

E-¢&
Pk, k) = Pk, k) exp(— > , (10)
kT,
wheref = £(k) and&’ = £(K).
In the elastic case

=2
kBTB E‘d

P(k, k/) = —4n2hpvg

S(E—E&), (11)

whereé is the Dirac delta functionZ4 is the deformation potential of acoustic phononshe
mass density of the material angthe sound velocity of the longitudinal acoustic mode.
In the case of inelastic scattering

Zf(DtK)z (

P(k’k/): ng+ s F 5

2 2

1
8(E — € F how), (12)
872pw

where D, K is the deformation potential for non-polar optical phona#isis the number of
final equivalent valleys for the considered intervalley scatteriagis the longitudinal optical
phonon energy ands is the phonon equilibrium distribution according to the Bose—Einstein
statistics

1
expio/keTy) — 1

ng

The double choice of sign means that we must consider the sum of the two cases with the
upper and lower sign.

At last for the scattering with impurities we shall adopt the Grinberg—Luryi approximation
[27], which is well suited for a quasi isotropic distribution function

J (&) — fok)

Timp

Cimp[f] = - (13)
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where fj is the isotropic part of the distribution function angdr,, is the scattering rate due
to the interaction with impurities of chardée,

1 _nhke4ZZNimp |:In(l+y>+ 1 :|’
14 1+y

with Nimp concentration of impurities angl screening parametgr = 12b%/8m*E, b be-

ing the inverse screening length. We observe that the non-parabolicity will enter only in the
calculation of the moments of the impurity scattering through the elementary volume in the
integrals.

1.5. H-THEOREM AND THE NULL SPACE OF THECOLLISION OPERATOR

H-theorems were obtained in [28, 29] under the assumption that the transition probabilities
are bounded functions. In [30-32] an H-theorem has been derived for the physical electron—
phonon operator in the homogeneous case without electric field. The same problem has also
been discussed in [33] in the parabolic case.

Here, we review the question in the case of an arbitrary form of the energy band and in
the presence of an electric field, neglecting the electron—electron interaction and assuming the
electron gas sufficiently dilute to neglect the degeneracy effects. By following [34] a physical
interpretation of the results is suggested.

As showed in the previous section, the transition probability from the ktaiehe statek’
can be written as [25]

Pk, k) =Gk, K) [(ng + DS(E — & + hwy) +ned(€ — € — hw,)], (14)

whereé (x) is the Dirac distribution ang (k, k') is the so-called overlap factor which depends
on the band structure and the particular type of interaction [25] and enjoys the properties

Gk, k) =Gk, k) and G(k,k")>0.

hw, stands for the phonon energy.
For the moments of the collision term with respect to the weight funatid the follow-
ing chain of identities can be proved as in [30-32]

/BC[f]I//(k)d"‘k = /B B[P(k’, K)£(K) — Pk, K) f(K)] v (k) d*k Bk’
- /B BP(k,k’)f(k) (v (k) — (k) bk d®k’

= Gk, K) [(ng + DS(E — € + hwy) +nyd(E — € — hoy)] x
BxB

x f(K) (¥ (K) — (k) d*k &K’
= [, GUKIE — & = hwy) [(ng + D f K) =g f (O] x
x (Y (k) — ¥ (k)) ok oK.

By following [32] if we set without loss of generality

£
£ = hk) exp(—ﬁ) ,
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and in analogy with the case of a simple gas if we t@kk) = kg log 2(k), then by using the
definition of§(x) one has

kB/ ClfNlogh(k)d®k = kg Gk, kNS — & — hwy)n, exp(— £ ) X
B BxB ks Ty

x (h(k') — h(K)) (logh(k) — logh (k")) d®k d®k’ < 0. (15)
Therefore along the characteristics of Equation (5)

—/ Iogh(k)d—f d*k = —/C[f] log (k) d®k >0
B dt B

holds. This implies that the opposite of

__ S — P ) 3
v = /B(/logh(k)df)dk_ kB/B<rogf o)) ok (16)

can be considered as a Liapunov function for the Boltzmann—Poisson system (5)—(7). The first
two terms are equal to the expression of the entropy arising in the classical limit of a Fermi
gas, while the last term is due to the presence of the phonons. Indeedresent the non-
equilibrium counterpart of the equilibrium Helmholtz free energy with reversed sign, divided
by the lattice temperature. It is well known in thermostatics that for a body kept at constant
temperature and mechanically insulated, the equilibrium states are mininéa for

Strictly related there is the problem of determining the null space of the collision operator
which consists in finding the solutions of the equatitiry) = 0. The resulting distribution
functions represent the equilibrium solutions. Physically one expects that, asymptotically in
time, the solution to a given initial value problem will tend to such a solutidn # 0.

In [28, 29] it has been proved that the solution€0f) = 0 are the Fermi-Dirac distribu-
tions under the assumption that the scattering probabilities are bounded functions. However
this hypothesis is not satisfied by some scattering mechanism (as with phonons, etc.).

The problem of determining the null space for the physical electron—phonon operator was
tackled and solved in general in [32] where it is proved that the equilibrium solutions are not
only the Fermi—Dirac distributions but form an infinite sequence of functions of the kind

1
1+ h(k)expEk)/ KT, ’

fk) = 17)
whereh(£) = h(€ +hw,) is a periodic function of periofiw, /n, with n positive integer. This
property implies a numerable set of collisional invariants and hence of conservation laws. The
physical meaning is that the density of electrons whose ertediffers from a given value

by a multiple ofziw, is constant.

2. Macroscopic Models

Macroscopic models are obtained from the moment equations of the Boltzmann transport
eqguation suitably truncated at a certain orderThe truncation procedure requires solving
the following two important problems:

() the closure for higher order fluxes;
(ii) the closure for the production terms.
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If a N-moment model is considered, the closure problem consists in finding an appropri-
ate expression for the higher order moments and the production terms as suitable functions
(constitutive relations) of the firg¢ moments.

In this chapter we will present the general form of the balance equations, discuss some
simple closure relations for the higher order moments as well as for the production terms
and show that as limit one recovers the celebratefi-diffusion model. We also treat the
hydrodynamical models constructed by analogy with the theory of classical nonviscous heat-
conducting monatomic gases, which lately has received a considerable attention by engineers
and applied mathematicians. For these models the compatibility with the Onsager reciprocity
relations of linear irreversible thermodynamics is investigated.

2.1. MOMENT EQUATIONS

The macroscopic balance equations are deduced as moment equations of the Boltzmann trans-
port equation as in gasdynamics [35]. By multiplying Equation (5) by a funati¢k) and
integrating ovet3, one finds thanoment equation

2 / YR ) 2k — e / w<k>—fd3k— / vRCLAdk,  (18)
with
M¢=/¢(k)fd3k,
B

the moment relative to the weight functign
Since

; W 4
[vtoghdn= [ wioma - [ F d

with n outward unit normal field on the bounda#8 of the domain3 and dr surface element
of 88, Equation (18) becomes

%+i/ F (v () &k + BV [/ fwdg’k—/ W(k)fnjda}
ot oxt Jp B~ 0k;j B

— /3 v (K)C(f) k. (19)
The term
/ ¥ (K) fndo,
9B

vanishes either wheB is expanded tdR® (because in order to guarantee the integrability
condition f must tend to zero sufficiently fast &3~ oo ) or whenB is compact andr (k) is
periodic and continuous ahB. This latter condition is a consequence of the periodicity of
on B and the symmetry oB with respect to the origin.

Various models employ different expressionjofk) and number of moments. Moreover a
unipolar or bipolar version can be formulated.
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2.2. THE RELAXATION TIME APPROXIMATION

A simplistic model approximately valid under non-degenerate conditigng (1) for para-

bolic bands and elastic scatterings [4] is represented by the continuity equations, obtained by
taking ¥ (k) = 1, coupled to the Poisson equation for the electrical potential. For a unipolar
model (only the electrons are considered) these equations read

an  9(nVh

— — =0, 20

ot ox! (20)

V - (eV¢) = e(Nao — Np +n), (22)
where

. 1 .
V’:—/fvld?’k
nJnp

is the average electron velocity.

When a bipolar models is considered, a term due to the generation-recombination mech-
anism should appear in the RHS, even though this effect is relevant for times of order 10
and in most applications can be neglected because the characteristic times are of order of a
fraction of picosecond.

In this model the closure consists in expressig as function of: and the electric field
in order to get a diffusion equation for the charge density.

The closure procedure is based on the approximation of the collisiorCtasa relaxation
type expression

A

f=r
_ 22
N ==Zzi0r (22)
where f can be written in the following convenient form:
N Ek) — &
f = exp- SO T (23)
B

corresponding to the local Maxwellian distributiofi. is the local electron temperature (at
global equilibriumT = T.), ¢ the electrostatic potential arf# the Fermi energy.

At global thermal equilibriuni"=const ancr = const in space and time.

We consider time scales longer than the collision timéS(k)) and therefore we can
neglectdf/at in the Boltzmann Equation (5). By iterating we then obtain [4] in the usual way
to first order

f = feq— T(EKDIV(K) - V foq— eE - Vi fedl, (24)
which, using Equation (23), gives
Jeq [E(K) —ed + e&F
kgT KgT

LetJ = nV denote the particle flux. Then by substituting Equation (25) into the definition of
V, one obtains

j=__ {[A+Bq(5,:—¢)]2—eBV5F}, (26)
ke T

f = feq— T(£(K))

v(k) - VT — gv(K) - vgp} . (25)

B 3m*kBT
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where
A = 47 / Bk fedk* T (EK)EK),
B = 47'(/ K fedk*T(E(K)).

Now the particle density is given by

eEr — e

n= / Bk f = (w2m*ksgT)*? exp— (27)
kgT
whence
kBT n
Er=¢ — — log (—aT3/2) + const (28)

kBT (aT3/2

VE&=V¢p+V [— log )} with a = (72m*kg)*2.
e

From Equation (28) we see thét plays the role of electrochemical potential (usually called,
in this context, quasi-Fermi potential).
It is convenient to introduce the intrinsic concentration of electrons

n; = aT®? (29)

and then

5F=¢—UT|09(§),

whereU- is the thermal potential

ke T
Up = 2~
e

Also, it is convenient to introduce the mobility

o = o (30)
and the thermoelectric power
Pn=A+Be(€|:—¢). 31)
eBkgT
Equation (26) then rewrites
J=u,n(VE& — P,VT). (32)

Under isothermal conditiongd; = 7, =const, we have

Vn
V& =Ve —Ur—,
n
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whence

J=u,nVe — D,Vn, (33)
where

D, = u,Ur, (34)

is the diffusion coefficient and Equation (34) expresses the equilibrium statistical mechanics
Einstein relation.

Under isothermal conditions therefore the electron system can be described by the particle
continuity Equation (20), the constitutive Equation (33) and the Poisson Equation for the self-
consistent potential. Allowing for two bands (valence and conduction band) and including in
the same way as for electrons, the equation for holes, we obtain the celeatniitddfusion
model

d
d
8_1;+v.3p:G_R, (36)
J, = u,nVe — D,Vn, (37)
‘Jp = Mppv¢ - Dpr, (38)
V- (eV¢) =e(Na — No +n — p), (39)

wheren, p, J,, J, are the particle number densities of electrons and holes and their respective
fluxes,u,, u,, D,, D, are their mobilities and diffusivities (related by the Einstein relations ),
Na, Np the concentration of acceptors and donorsatia dielectric constant. The quantities
G, R are functions of:, p and represent the rates of generation and recombination, respect-
ively. For a comprehensive collection of expressions for mobilities, diffusion coefficients and
generation-recombination terms the interested reader can see [36]. The drift-diffusion models
has received in the last decades an intensive analytical and computational investigations (for
a review see [26, 37]).

In the general case, when the temperature is not uniforn, the drift-diffusion equations must
be suitably modified.

In linear non-equilibrium thermodynamics it is customary to definetlieemodynamic
heat flux(note that it is different from the kinetic definition of heat flux) as follows:

H= / dK(EK) — e + eEVK) f (40)

that is we subtract from the total energy the Fermi energ¥ and the potential energyp.
Hence,

H=S+elEr —¢)J. (“41)
It follows
Vb4 vT
=— —¢[A+B = 2I\4 42
i Cior — A+ Batee — 91 VEe @2)
where

C =4rn / dk fegk*T (E(K))(E(K) — e + eEF).
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Equation (42) can be rewritten in the form

A
H=n|ew, PbksTVER — —=VT|, (43)
kT
where
4n C
)\n = a5 i1 +_-
3m*kgThn

Equations (26), (43) form the basis of the energy transport model [38]. By comparing
Equation (43) to Equation (26) we see that the Onsager reciprocity principle [39] holds for the
energy transport model [4, 15].

2.3. HYDRODYNAMICAL MODELS

The drift-diffusion equations do not comprise the energy-density as a dynamical variable,
hence they are not capable of describing phenomena where energy plays an important role, as
hot electrons. A way of including energy as additional variable is given by the model we will
show in this subsection.

The energy bands are still assumed to be of parabolic type and in addition to the continuity
equation, further moment equations are considered: the balance equations of linear momentum
(particle flux) and energy

amVH  amPY) +neEi

. =nCh, 44
at ax/ m* "tr (44)
] d(nS’
() + (nS. ) + neViEX = nCy, (45)
ot ax/
where
1
W = —/ Ek) f d®k s the average electron energy (46)
nJs
1 .
St = —/ fviE(k) Bk s the energy flux (47)
nJs
. 1 o .
PV = —/ fviv/ d®k s the pressure tensor (48)
nJs
1 .
Cy = —/C[f]v’ d*k is the linear momentum production (49)
nJs
1
Cy = —/C[f]é’(k) d®k is the energy production (50)
nJs

This approach dates back to the pioneering work of Blotekjaer [1] and then of Baccarani
and Wordeman [2]. Because of its widespread popularity we denote this model by BBW
(Blotekjaer—-Baccarani—Wordeman).

Let us introduce the random componertic and the mean value*u of k,

kK=m*(V +0),

and decompose the tensbf’ as

nPy =nvivi —i—/ Ak feicd.
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The tensor
6l :/ d*kcie’ £

is then split into an isotropic and traceless part

A

Gii = 19857 4§,

where
o = / ok f 2.
Then
P =nVivI+ 16587 4. (51)

In the model of Baccarani and Wordeman the anisotropic teh€6t is neglected

6l = Q. (52)
For the energy density one has

nW = '"7(;1\/2 +05).

Now we define the electron temperature(distinct from the lattice temperaturg ) by as-
suming, in analogy with kinetic energy of monatomic gas, the equation of state for ideal
gas

3nkgT nm*V?2
=nW — , 53
> n 2 (53)
whence
~ 3nk n ke T ..
ok, = 2B and g = 1EBL i
m* m*

Concerning the productions, the momentum rate of change is assumed to be of the relaxation
time type

J
Tp
hence the momentum Equation (44) rewrites

d(nV! 0 o kT .. Ei Vi
VD) 9 N pyiyi g el nal_ nV (55)
ot ox/ m* m* T,

Furthermore we can decompose the energy Sag
S=WV +kgTV +q, (56)

whereq is the heat flow vector

ng = m?/ d®k fcZc. (57)
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In the BBW model it is assumed thidite heat flow vector is given by the Fourier lgelosure
assumption)

In the original Baccarani and Wordeman model the Fourier law is simply assumed as a
phenomenological law. A better justification (which, however, leads to a more complicated
expression) has been given by several authors [4, 14, 40]. The argument runs as follows.
Assume the distribution function to be very nearly isotropic, hefige. = 0 andf_;;. = 0.
Furthermore assun@ to be represented as relaxation term

~ S
Q=-—.

Tq
with 7, the energy flux relaxation time. Then under stationary conditions Equation (79) yields

10 Frr 56]l’lkBT
Sl' = — oy y El‘ .
fa [3 o | ome ]
Now let us assume (closure assumption) thatcan be calculated as it were due to a Max-
wellian with temperaturd (thereby neglecting the convective terms), then

151 2
F - keT)”
2m*

Now the momentum Equation (44) with the assumpt@n= —J/7, and neglecting the
convective terms yields

j=_ [V(nkgT) + nek].
m*

Then, from the definition of heat flow vector and still neglecting the kinetic energy contribu-
tion, one obtains

5thnkBT 8(kBT) 5nkBTV,~ 1 1
- . — - — . 59
2m* ax! + 2 fa (59)

Tp Ty

ng, =

By assumingr, = t, (also required for consistency with the Onsager reciprocity relations)
one recovers the standard Fourier law.

The closure assumptions made by Baccarani and Wordeman for fluxes are open to criti-
cism. In particular the assumption that the heat flow is described by the Fourier law is rather
questionable [6, 7], as will be discussed in the sequel.

Modeling the relaxation times is also a rather delicate question. In the original Baccarani
and Wordeman formulatiom, is determined by the following consideration. The electron
mobility w,, is related to the momentum relaxation times by

Un = erp/m*'

It is assumed that the Einstein relations relating mobility to diffusivity hold also outside
thermal equilibrium.
D, = kgT u,, and thatD, is constant and equal to the low field diffusiviBy. Hence,

Do = kgTypino = kgT pip,
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where,q is the low field mobility, whence
m*MnOTL
eT
The relaxation timer,, is obtained by approximating it with the corresponding expression
which holds in the stationary and homogeneous case
Wo—W
Ty = ———,
Y e|E|V

T, =

and by expressing the electric figldE | as a function of temperature by using the Caughey—
Thomas formula for the high-field mobility [36]

EN]
Mn = HUno |:1+ <Mﬂ07) j| s
Us

wherevs = 1.0 x 10’ cm/s is the saturation velocity. Since in the homogeneous case

1,eE! .
P i
=L =, E,

i

then

_ m*MnOTL 3kB/Ln0TTL

T T2 T 2002(T + 1)

The modeling of the thermal conductivity coefficient is obtained from the Wiedemann—Franz
law (which holds near thermal equilibrium)

5 ke \*
K= <— + c) (—B) nlw,T, (60)
2 e

where the constantis related to the exponent in the expression for the relaxation time

5 Cc
T(g) =170 <5—0> .

In the original model of Baccarani and Wordeman the cheiee—1 is made and therefore
()
Kk==\|—| neuw,T.
2\ e

The BBW hydrodynamical model for electrons consists then of the following equations:

e continuity equation

]
a—’: +V- (V) =0, (61)
e momentum equation
(Vi ) : ksT ;. E' Vi
VD) L O (nyivi ¢ el gy naE__n : (62)
at ox/ m* m* T,
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e energy equation

9 (1 3 1 5
— (—nm*V2 + EnkBT> +V- |:(—nm*V2 + EnkBT> V — KVTj| +

at \ 2 2
W — W
tneE-V = — ° (63)
Ty
e Poisson’s equation
V- (eV¢) = e(Na — Np +n — p). (64)

These equations, were not for the collision terms, would be the same as the balance equations
for a charged heat conducting fluid coupled to Poisson’s equation.

Gardner, Jerome and Rose [41] and Gardner [42, 43] numerically integrated the BBW
model for the ballistic diode in the stationary case. In [42] the system of equations was discret-
ized by using central differences (if the flow is everywhere subsonic) or the second upwind
method (for transonic flow). The discretized system is then linearized by using Newton’s
method with a damping factor. In this way Gardner was able to show evidence for an electron
shock wave in the diode. In [44] Gardner’s results have been recovered by using a viscosity
method.

Numerical solutions in the non-stationary case have been obtained in [45] by using an ENO
scheme. The same results have been obtained in [46] by using a central scheme.

Now we pass to investigate the Onsager conditions for the BBW model.

Now let us go back to the momentum balance Equation (62). In the stationary case it yields
to the first order approximation (that is by neglecting the second order terms in the velocity)

m m

and from Equation (28)

3/2
Q= S {—eV5F+ [§+Iog (aT >]V(kBT)}- (66)
m* 2 n

Now we consider the energy flux Equation (79) in the stationary case. Also in this case
F_;;~ = 0 approximately, hence

kgT F,, Sn(kgT)?
5‘]”BV¢, Fr _ n(B)’
m* 3 2m*

~ 1
= _VFrr -

Q 3
according to the equilibriunfeq, whence

~ 5
Q=5 {VIntkeT)"] — enksTV},

which gives, by using Equation (28)

< 7 T3?
Q= i {—anBTV&: + |:— + log <Cl ):| nkBTV(kBT)} . (67)
2m* 2 n
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Now, in the BBW model one assumes the following relaxation type forms for the collision
terms

Q=-2, (68)
Tp

0 =-> (69)
Tq

5 T3/2
J= {—eV&: + |:— + log (a )} V(kBT)} , (70)
m* 2 n
T3/2
H= 2% {kBT [% + log (a )] VE + AVT} : (71)
m* 2'Ep n
with

A—i Sﬁ Z-|—Io aT?? kT kgT lo (L) §-|—Io aT?
_e‘rp 212 g n B e 9 aT?32) |2 g n '

Let I denote the coefficient 0¥ (kg T) in the expression fod and /1 the coefficient ofVEE
in the expression for. The Onsager reciprocity principle requires that [39]

gkeTI = —1I1. (72)

Therefore, the Onsager reciprocity relations are satisfied if and onty i&= t,, but
Monte Carlo simulations show that this relationship does not hold near thermal equilibrium
[15]. This implies that the production terms must have a more general form.

A more suitable expression is given by

Q = —(ad +bS), (73)
Q=—(@J+h9). (74)
Now
1= w64 s=1a o
= Z( Q —0Q), = Z(aQ—aQ),

with A = ab — ab and therefore Equation (64) gives

1 ~ 5akNT +k Tlo n l; SkaT
0 s 1001 2

)] [ ()]

which can be rewritten as

G+ 3bksT = 3kgT (a + 3bksT). (75)

This last relation has been compared with Monte Carlo simulation in [53].
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3. The Extended Hydrodynamical Model

In a series of articles [13—-20, 34] a general framework for getting closure relation is proposed.
At variance with previous treatments, it is not an ad hoc procedure but it is based on the
application of the entropy principle within the framework of extended thermodynamics [21,
22] or equivalently the maximum entropy principle or the moment theory of Levermore [47].
Apart from the usual balance equations for carriers density, momentum and energy, this class
of models comprises evolution equations for the heat flux and shear stress.

The resulting system is hyperbolic in a suitable domain of the space of variables. In the
stationary case, by linearizing the heat-flux equation for small temperature gradients (Max-
wellian iteration) one obtains an extension of the Fourier law which also includes a convective
term. With the addition of this term, the Onsager relations for small deviations from thermo-
dynamical equilibrium are verified (at variance with the BBW model). Furthermore, the heat
conductivity turns out to be directly related to the energy-flux relaxation time and does not
contain any undetermined free parameters (at variance with the BBW model).

First we illustrate the guideline upon which to construct the model for the case of a gen-
eral energy band structure. Then specific results will be presented in the case of the Kane
dispersion relation and, as limiting case, in the parabolic band approximation.

Concerning the moment equations several choices of the weight fungteaan be made
and they lead to different balance equations for macroscopic quantities. Itr [i/8F chosen
equal to 1k, £ and& ik in order to make a comparison with the results obtained in [8] by
means of Monte Carlo simulations. However, for time dependent simulation it is more useful
to consider a slight different set of weight functions [19]7:k, £ and€ V because it allows
an easier implementation in humerical codes (the two choices are practically equivalent for
stationary problems or for non-stationary problems in the parabolic band approximation).

By considering such expressions ffarone obtains the continuity equation (we recall that,
as said above, indeed a term due to the generation-recombination mechanism should appear
in the RHS, but this effect is relevant for times of orderd6econd and in most applications
can be neglected because the characteristic times are of order of a fraction of picosecond),
the balance equation for the crystal momentum, the balance equation for the electron energy,
and the balance equation for the electron energy flux. For the sake of simplicity hereafter we
neglect the boundary integral terms because only the Kane dispersion relation or the parabolic
case will be considered in the sequel and then the explicit form of the macroscopic balance
eqguations reads

on n a(nVvVh
ot oxi

=0, (76)

d(n P! (U
( )+ ( .)—i-n

gt ow TreE =nCh (77)

a(nWw) n d(nS’)

k _
™ or) +neV,E* = nCy, (78)

d(nSH . A(nF)

G — i
™ ™ +neE;GY =nCy, (79)
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where

n = /fd3k is the electron density
B

. 1 .

Vi = —/ fvi d®k s the average electron velogity
nJs
1

W = —/ Ek) f d®k is the average electron energy
nJs

1 .
S = —/ fuiE(k)d®k s the energy flux
nJs

i 1 i 43 :
P' = — | fhk'd’k isthe average crystal momentum
nJs

y 1 . _
U’ = —/ fv'k/ &k is the flow of crystal momentum
nJs

110
G = = | Zf—(sv) k.
n/Bth)kj(v)

- 1 -
Fi = —/fvlvfé’(k)d3k is the flux of energy flux
nJs
. 1 :
Cp, = —/C[f]hkl d®k is the production of the crystal momentum balance equation
nJs
1
Cy = —/C[f]g(k) d®k is the production of the energy balance equation
nJs

) 1 . . . ;
Cy = - /BC[f]v’S(k) d®k s the production of the energy flux balance equation

Analogous equations can be written for holes if a two component charge carrier model is
employed.

As remarked several times above in these lectures, the moment equations do not constitute
a set of closed relations because of the fluxes and production terms. Now we will present a
physically well-sounded procedure for getting the required closure relations.

3.1. THE MAXIMUM ENTROPY PRINCIPLE

In this subsection a general energy band will be considered.

If we assumez, Vi, W and S’ as fundamental variables, which have a direct physical in-
terpretation, the closure problem consists in expres8ind//, F'/ andG” and the moments
of the collision term<C%,, Cy andCi; as functions of:, Vi, W ands'.

We stress that the role of the mean velodity here is radically different from that role
played in gas dynamics. In fact, for a simple gas the explicit dependence of fluxes on the
velocity can be predicted by requiring Galilean invariance of the constitutive functions. Instead
Equations (76)—(79) are not valid in an arbitrary Galilean reference frame, but they hold only
in a frame where the crystal is at rest (in the applications it can be considered as inertial
and it is possible to neglect the inertial forces). Therefidteis the velocity relative to the
crystal and the dependence on it in the constitutive functions cannot be removed by a Galilean
transformation.

The maximum entropy principle (hereafter MEP) leads to a systematic way for obtaining
constitutive relations on the basis of information theory (see [21, 22, 47, 48] for a review).
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According to the MEP if a given number of momenis, are known, the distribution
function fj;r which can be used to evaluate the unknown momentg,aforresponds to
the extremal of the entropy functional under the constraints that it yields exactly the known
momentsM 4

/B'QlfAfME d3k = My. (80)

Since the electrons interact with the phonons describing the thermal vibrations of the ions
placed at the points of the crystal lattice, in principle we should deal with a two component
system (electrons and phonons). However, if one consider the phonon gas as a thermal bath
at constant temperatuf® , only the electron component of the entropy must be maximized.
Moreover, by considering the electron gas as sufficiently dilute, one can take for the electron
gas the expression of the entropy obtained as limiting case of that arising in the Fermi statistics

s = ke /5 (flog f — f) dk. (81)

If we introduce the lagrangian multipliess 4, the problem to maximize under the con-
straints (80) is equivalent to maximize= A* M, — s, the Legendre transform ef without
constraintsgs’ = 0.

This gives

Ayt
kg

[Iogf—i— ]8f=0.

Since the latter relation must hold for arbitray, it follows
1 A
fME = exp —k—AA'g// . (82)
B

If n, Vi, W andS’ are assumed as fundamental variables, then
YA =(LVv,.E,Ev) and Aa= (A kgh; ker" kgh]"),

with A lagrangian multiplier relative to the density A" lagrangian multiplier relative to the
energyW, A; lagrangian multiplier relative to the velocity’/ and )" lagrangian multiplier
relative to the energy flu%/. Therefore, the maximum entropy distribution function reads

fue = exp[— <ki)\ +AVE+ a0 + )\,.Wv"f:)} , (83)
B

with A 4 functions of the moment&f ,. We want to stress that at variance with the monatomic
gas, the problem of the integrability due to the fact that the sign of the argument of the ex-
ponential is not defined, does not arise here because the moments are obtained by integrating
over the first Brillouin zone, which is a compact setii.

In order to get the dependence of thg's from M4, one has to invert the constraints (80).
Then by taking the moments g}, andC|[ fi,£] one finds the closure relations for the fluxes
and the production terms of the system (76)—(79) . On account of the analytical difficulties
this can be achieved only with a numerical procedure. However, apart from the computational
problems, the balance equations are now a closed set of partial differential equations and with
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standard considerations in extended thermodynamics [21] it is easy to show that they form a
quasilinear hyperbolic system.
Let us set

n(f) = —ke(flog f — f).

The entropy balance equations is obtained multiply the Equation (9)(#y = 9,n(f) and
after integrating with respect toone has

ok’
By taking into account the periodicity condition gfon the first Brilluin zone, the integral
9 an(f) »
(f)=—f &k = ——fdwzi/ "ok
g s [ 22 [ e
vanishes and the entropy balance equations assumes the usual form

0 0 ) . 9
o [ dicr o [ awidk- e [ (g rdk= [ noetsdk.
tJs ax' Jp B B

] d¢! ) . .
DL g with ¢f = / n(f)v' d*k  entropy flux
ot ox! B

and

g=/n(f)C[f] dk entropy production
B

The electric field does not contribute neither to the entropy production nor to the entropy flux.
Let us now rewrite the balance Equations (76)—(79) in the form
M4 N IFA
ot dx!
In [21] it is proved that the field equations and the entropy balance equations are related by
the condition that

ds ¢ A [8MA AFA
—Ax

= G"(Ms, E)). (84)

ot axi

holds for arbitrary values of the fieltf , with the lagrangian multiplierg\ 4, being the same
as those arising by employing the maximum entropy principle. This implies [21] that

as’

_l’_

— — GA(Mg,E;)| =0, 85
ot e — G )| )

M, =2 86
AT 9A, (86)
) 9 i
Fid = 22 (87)
I,

with s’ = A,M* — s and withg" = A, F'4 — ¢'.

If 92s'/0A 49 Ag is defined in sign, one can globally invert [49] and express the moment
M, as function of the lagrangian multipliersg. As shown in [50] the previous condition is
equivalent to require that

0
f/{u = anE(X)
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is defined in sign, withy = A ¥4 /kg. One trivally getsf;,, < 0 and therefore the balance
Equations (76)-(79) can be rewritten in terms of the lagrangian multipliers as

%' 0Ag 0% OAp i (2 ¢

AA40AEg Ot OAsAg OxT AN )T
In this form it is immediate to recognize that the balance Equations form a symmetric quasi-
linear hyperbolic system [51]. The main consequence of this property is that according to a

theorem due to Fisher and Marsden [52] the Cauchy problem is well posed for the system (88)
at least in simple case when the electric field is considered as an external field.

(88)

3.2. QLOSURERELATIONS FORKANE’'S DISPERSIONRELATION

As afirst attempt, in order to get explicit forms of the constitutive Equations and improve over
the parabolic band approximation (and also to obtain a first guess for future numerical work),
we shall consider hereafter the Kane dispersion relation. The price to pay for this choice is
that the integrability condition is no longer guaranteed becausetiemot a compact set but
B=R:3

However this difficulty can be circumvented and we show how to get, under reasonable
assumptions, an asymptotic form £ which enjoys the property of integrabilty alsoR?.

At equilibrium the distribution function is isotropic

1 &
=exp|——AX — 1, 89
Jeq p|: (kB E+ kBTO):| (89)
that is at equilibrium
1 . )
Ay M. =0, AV =0.

keTo'
Monte Carlo simulations for electron transport in Si show that the anisotropyisfsmall
[6, 8, 53] even far from equilibrium. The physical reason is that in Si the main scattering
mechanisms, the interactions of electrons with acoustic and non-polar optical phonons, are
both isotropic with a good approximation.

Upon such a consideration we make the ansatz of small anisotropyfer Formally
we introduce asmall anisotropy parametet, assume that the multipliers are analyticéin
and expand them arourdd= O up to second order by taking into account the representation
theorems for isotropic functions,

r=210 452202, (90)
AV =AWO 4 52, W@ (91)
ai= 82D, (92)
AV =8 D, (93)
Therefore,fy can be written as
1O 2 2@
fug =exp( ——— —A"Og) [1-86x + 62 = - = —A"V@¢g) |, (94)
kB 2 kB

with x = APv? + 1) Pvie,
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We remark that.© andA"© are not the equilibrium part of andx", but the part arising

when f, g is isotropic.
In order to get the expressions of thés in terms of theM 4, we have to invert the following

eqguations:

n = / fME dgk, (95)
B

nW = /BngE dk, (96)

nvi = /BvifME d3k, (97)

nS' = /B V' E fur k. (98)

By retaining only the terms up to second ordes jifirom the constraints (95)—(98), we get
the following algebraic systeni/{ andsS; are consistently considered as terms of of&jer

n= exp[— (kik(o)>] /Bexp[— (W"Og)] &k, (99)

B

1
W= exp[— (k—)\“”)] / Eexp[— (AV0¢)] dk, (100)
B B
1 x2
0= / exp(r"@¢€) [—MZ) +AV@e — —} : (101)
B kB 2
W (0) 1o, ,woe X
0= [ Eexp(A"PE) | =1 +1"@Pg - —1, (102)
B kg 2
nVi=— / vl exp(AVQ8) x ok, (103)
B
nS = —/ v Eexp(AVO€) x k. (104)
B

Sincef is a isotropic function ok, in order to solve the system for the multipliers it is
computationally convenient to expres3kdn terms of€ and the elementary volume of solid

angled,

*

Bk = k2 dk dQ = %,/zn*g 1+ &) (1 + 2¢&) dEd2.

Equations (99) and (100) decouple from the other equations and explicitly read

)\‘(0) o0
n= 4% exp(—k—) / exp(—A " O&Ym*\/2m* E(L + a&) x (14 20E)dE,  (105)
B 0
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... parabolic band case, — Kane dispersion relation
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Figure 1. Inverse of the lagrangian multipliekd” O vs. the energyw.

W Jo  EVETTaB) (A + 206) exp 2" 06) de
o VETF a®) (L + 20E) exp(—AVOE) dE

Relation (106) shows that”© depends only oi¥. The analytical inversion of Equation
(106) is rather involved and we have resorted to a numerical inversion. The results are showed
in Figure 1. Near global thermal equilibrium the value )df© is the same for both the
parabolic and Kane dispersion relation. Wh&nincreases, the value af”© in the Kane
case is greater.

The knowledge ok " allows us to get the constitutive functions for the other lagrangian
multipliers.

Relation (105) gives?, which essentially plays the role of a normalization factor

(106)

2O hn
i)
kg A m*~/2m*dy

with
do = / VE L+ af) (14 22&) exp(—1"VO¢) dE.
0

The lagrangian multipliers.” and A} can be obtained by inverting the linear system
represented by Equations (103) and (104).
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By taking into account the following formulavalid for | belonging toS?, the unit sphere
of R3,

/ g |0 Kisodd
B R = ]:1%.8(,'1,'2 <81 if ks even

one findsk; = b11Vi + b12Si, 1}V = b1,V + b22S;. The coefficients;; are given by

b11=%, 17122—%, 5222%,
with
all__ﬂ7 12=—£, 2= i )
3m*dy 3m*dy 3m*dy
and

2
A = ayiaz — ay,,

d; and p; being

d, = / EVE L+ al) (14 2aE) exp(—1"0¢€) de,

0
/00 [EQ+aE)]¥? e
0

—WWVOg) de.
1r o0 oM )

Pk =

Finally, the second order correctionsitand)", are obtained by solving the linear system
(101) and (102).
The following expressions are found:

1@

k—=a1V-V+2a25-V+a35-S, (107)
B

AP =@, V-V 42055 V+0aS-S. (108)

The coefficientsy; are given in [18].
3.3. CONSTITUTIVE EQUATIONS FORFLUXES

Once the lagrangian multipliers are expressed as functions of the fundamental variables, the
constitutive equations for fluxes can be obtained by using the distribution function given by
the maximum entropy principle. First we observe that by the definitioR’oft follows

Pl =m*(v' 4+ 2aS"), (109)

while for the other tensorial quantities up to second order terms the constitutive equations are
of the form

(0 277
Uy = U + 6202, (110)

1 Round brackets mean symmetrization, elgy) = 1/2(A;; + Aj).
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Fyj=Fp +8F, (111)

Gy =G\ +6°GY. (112)
Concerning the tensdr’/ at the zero order we have

Ui — y©Osgii (113)

with
2 o0
UvO — _/ [EA+ a2 exp—1"O08) de.
3do Jo
For U7®? we get

U@ =81V -V +25,S-V+83S-987 + 84, VIV + 255 VIS + 86587, (114)

Similar calculation can be performed f6); andG;;. One finds

FiiO© — pOgii (115)
GO — G(O)Sij, (116)
where
2 o E[EA+ al)]¥?

FO=_—_ / AWOg de 117
Bnedg Jy SPM O e : (117)

— ” Ao (14 ———— )&%V dé. 118

G(o) p—. /c; exp( E) < + 31+ 20{5)) & +afdE ( )

The quadratic corrections are given by

Fi@ = (@1V -V +20,S-V +¢3S-9 687 + s VIVI + 205 ViS) 4 6 §'S7,

G1P =V -V+21SV+n3S-S)87 +naVIVI+2p5 VIS + e ST
The coefficients;, ¢; andn, are reported in [18, 19].
3.4. RRRABOLIC BAND APPROXIMATION

In this section we shall consider the limiting case> 0. The aim is two fold. On one hand we
will be able to get explicit formulas for the coefficients appearing in the constitutive equations,
on the other hand it will be possible to have a comparison with previous hydrodynamical mod-
els. Moreover, since the difference of the results between the parabolic and Kane’s dispersion
relation should be small, at least at low energies, the results presented here can be useful to
check the numerical evaluation of the previously obtained constitutive equations.

In the parabolic band approximation, it is possible to calculate the téyms andb, by
taking into account that far, v > 0

/ x""texp(—ax) dx = iF(v),
0 a’
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with " (v) the special Gamma function, and the property valid for positive integers

1 ST
r —)=—2p-DN
<p+ 2) o er—D
Concerning the lagrangian multipliers one has
A n 9m* 27m*
—=—1lo V.S——S-S 119
ks J (%nm*W)3/2 + 4W2 20Ws (119)
3 21m* m* 81lm*
W=_"—3+"-V.V-_—_V.S+——S.S 120
2w + 8wW?2 2w3 + 40w+ ’ (120)
21lm* Im*
Ai=———Vi+ —58§, 121
4w Vit 4W2S (121)
9n* 27m*
AV = v, — S;. 122
' 4w?2 20w3 (122)
The distribution function given by the maximum entropy principle in this case reads
p nexp(—AvOg)
e = —a_ 5
1 21m* Vi + 9n* s )y 9m* v 27m* AT
X N7 Vi T i |V i~ i|cv
4w 4w?2 4w?2 20w3

CA[(2 S N (9 2T g,.z
S\ = Vi T 00 |V i ijev | —
2 4w 4w?2 4wz"' 20w3
om* 27m*
— V.S— S.S)| —
(4W2 20W3 )

21m* Om* 81m*
_ V.V — V-S S.S 123
( 8Ww?2 2w3 + 40W4 ) 5} (123)

and the constitutive equations become

2 7 Tm* 2Tm* y
UP = SWs; + (——m*V -V s.v- 2" 5.g)si
i = gnou T ( 6 T Ew 50W2 ) *

7 oo 2lm* .o 8lm*
Fom VIV - T yish ¢

SiSi, 124
2 5W 50W2 (124)

10 7 m* Om*
*FP = w2, + [ ——=m*WV .-V 4+ —S.V —
m ki =gW f+< AT 50W

S-S) 87 +

T iy O gy, 35T
_m ——
6 5 50W

Sis/, (125)

1
Gij = %(Uij + Wéij). (126)
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In order to compare the results with those obtained for the monatomic gas and the hydro-
dynamical models of semiconductors presented in [14, 15, 54, 55], we observe that

£ = m*v® = Im* (Vi + ) (VF + ).

Therefore, by defining the electron temperature through

3nkgT = 3p = m*/ crc® F Bk
B

and introducing the heat flux
ng; = %m*/ cierc® f ok,
B
and the shear tensor
noj; = m*/ c<icjs f d3k,
B
we have up to second order terms
WP = Im*v2 4 3keT,
SZ(P) SkBTVl +O,lkv +q

Then the lagrangian multipliers read

— _log n +m*V-V m* V.q— 2 m* ™ 4.9
kg (2rm*kgT)%/? 2kgT (kgT)? 5 (ksT)? ’
W 1 2m*™V.-q 2m*q-q
)\, - + = - )
kT 3 (kaT)® ' 5 (kaT)
A= — Vi is
' ker2?
2 m*
o2 m
C T 5 Ue)3?

which are same as those obtained for a monatomic gas in the inviscid case. This shows that
according to the results presented in [54], the explicit dependence of the multipliers on the
velocity is the same as that found for a monatomic gas by operating the decomposition of
the lagrangian multipliers into convective and nonconvective parts (compare the previous
expressions for tha’s with that reported in [56, 57]).

The constitutive Equations (124),(125) becéme

dm* 18m*

U(P) = VV k Tal <l > <iYj>> 127
mViVy kel g Veidis T opg <l (127)
1 8 3 m*q?
P = VZ%keT + S(kgT)? — —m*V -0 — ——— | §;
™y (2’" sl 13 (B gV A ey )t
7 28 119m*q;q;
—m*kgTV;V; Vi . 128
oM ke TViVy 4 gm Vaay + 55 =7 (128)

2 (A;j) means deviatoric part of;;, that is(A;;) = 2(A;; + Aj;) — 1/3Als;;.
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By comparing the relation (127) with the analogous expres@l@’f@ in the case of a mono-
atomic gas [56]

Ui(jMG) = m*V,Vj + kBT(S,'j + Oij,
we may make the identification

dm* 18m*

= Ve iy 129
ST <q-’>+25(kBT)2q<"’> (129)

O'l'j
Now, if such an expression fer; is inserted into the expression f&; for the monatomic
gas [56],R,.(1MG), with quadratic correction we obtain (we neglect the term of higher order than
the second irV, and the second order terms involving the shear because they are of the third
order inV; andg;)

1 5 36m*q?

J 50k T
3, ThkeT
+ Em kBTVlV] + TO’,‘] +
i 6 i 112m*
+2m kBTVkV(j(Ski) + ECI(i‘Sjk) Vk + 2m V(,'C]j) + quqj.

This is the same expression (128).
3.5. QLOSURE OF THEPRODUCTION TERMS

The problem of the closure of the production terms has been tackled in different ways. In [53]
a relaxation time approximation was introduced and the relaxation times were considered
as functions of the electron density whose behaviour was obtained by fitting the results ob-
tained with the Monte Carlo simulations. In other works [17] a more justifiable model has
been proposed but the functional form was again based on the Monte Carlo data. Here we
present, in the case of the Kane dispersion relation and parabolic band approximation, a
self-consistent treatment based on the distribution function satisfying the maximum entropy
principle which gives closed relations apart from the values of few material parameters which
must be considered as fitting parameters as in the case of Monte Carlo simulations.

3.6. ACOUSTIC PHONON SCATTERING

If we set

_ ksTLE]
 4r2hpv?’

ac

the collision term for acoustic phonon scattering becomes

K
”d © JEA+ af)(+ 20E) exp(—1€) —
0

A7t Ko/ 2(m*)%2
B 7K \}/i;(m) m(1+2a5)fME~

Clf1~Clfuel =
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Since the scattering is elastic, one g€ts = 0. Concerning the production terms of crystal
momentum and energy flux, we can write

Ch = WV + 3 (W), (130)

Ciy = cSO(W)V; + (W) S;. (131)

The production matrix
@ (ag
c@o _ €11 €12
\ @0 @
21 22
is given byC@ = A@9 B The matrix

b11 b
B < 11 12)
b1 by

has been obtained in section 3.2, while the coefficients®f read

afy® = 0 /0 E2(1+a&)? 1+ 2aE) exp(—2"0¢) de, (132)
? 0
ay = o /0 £ (1+af)? (1 + 208) exp(—1VO€) de, (133)
az’ = rds / E L+ al)?exp(—1"0¢) de, (134)
ald = e / (L +a)?exp(—2"0¢) de, (135)
where
- 8r \/é(m*)g/zKac
K= -

3.7. NON-POLAR OPTICAL PHONON SCATTERING

For the non polar optical phonon scattering the collision term becomes

Clf1~Clfuel = Cal fmel — CLl fuel

If we set

Z(D,K)?

Knp = :
np 812 pwnp
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the gain part can be written as

4 2(m* 3/2K )»(0) 1 1 A
Cel fuel = n\/_(’;;) e exp(——) (nB == 5) Nt eXp(:I: wnp) X

% exp[— AW(O)(Eihwnp)] ’ (136)

where

Ny = \/ (& % honp[1 + a(€ £ honp)][L + 20(E £ honp)],

andv,. is the velocity evaluated for energy+ fwy,. The loss term can be expressed as

4 2(m* 3/2Kn 1 1
Culfue]l = n\/_(’;;) b (HB + > F 5) Ni fue.

At variance with the case of acoustic phonon scattering, energy is not conserved because non-
polar optical phonon scattering is not elastic. Moreover, the effects of intervalley interaction
must be taken into account. One finds up to the first ordér in

6
Cw =Y Cw,,
A=1

where for each valley

3?np 1 1 ha)np WO N
T2 272 o FA Vhon | =1 0. 137
Cw, 2 do <nB + > F 2> [exp( ks T F ®np n ( )
with
n* = / ENLVEDL+ ) (L + 20E) exp(—1" %) de
0
and

—  872m*)% 2K,
K,, = 33 .
For the quadratic correction see [19].
At thermal equilibriumi"© = 1/kzT, and the zeroth-order term for energy production

vanishes.
The production terms of crystal momentum and energy flux have again the form

Ch, = P W)V + P (W)s;, (138)

Ciy = ci (W)V; + ¢33 (W)S;. (139)
The production matrix

(np (np)
cm — €11 €12
C(np) C(np)

21 22
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is given by
cP — AP p

and the components of the matex™ read

K 1
alf = np Z (”B +=-F 2) / Ni53/2(1 +a&)%? eXp(—AW(O)E) ag,
T honpH (1F1)
np Knp 1 l 5/2 3/2 w(0)
a1y = ng+ - F = NLE* A+ af) exp(—A 5) ag,
2 2) JhonprF1)
K 1 1\ [® ES2(1 4+ a&)®?
np np w(0)
= ——— —exp(—A""YE) d¢&,
“a (nB T2 2 2) /hwan(l:Fl) N 1+ 20 p( )
K 1 1\ [*® EPA+ a&)??
np np W (0)
= + = Ny—————exp(—2""P¢&) d€.
Az — (nB 5T > /hwan(l;l) =T T 2 p( )

3.8. SCATTERING WITH IMPURITIES

The scattering with the impurities is elast&y, = 0.
The production terms of crystal momentum and energy flux are calculated as

ci =™ WV + TP (W), (140)

Cly = TP (WIVi + e3P (W) S;. (141)

The production matrix decomposes as
cmp — A(mp p
and the components of the matriX™? read
imp) _ Kimp /Oo L+ a&)¥?(1+ 22E) (lO 1+y 1 ) %
0

p _ Ty
H do VE y 1+vy
x exp(—2"0¢) de, (142)
K 1
aig? = =* f (L+a8)¥2(1+ 24E)VE ('09 j;y * m) )
X exp(—AW(O)E) de, (143)
imp) _ Kimp (% =0 e (] 1
o = 2 [ Ve ) (log L )
X exp(—AW(O)E) de, (144)
K % 1+y 1
(mp) _ Imp 321 32 (log—Lf + ——
ay, m*dO/o EV(1+ af) (og > + 1+)/> X

x exp(—2"0¢) de, (145)
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3.9. RARABOLIC BAND LIMIT

The parabolic band limit of the closures for the production terms is recovered from the results
obtained in the case of Kane dispersion relatio& as O.
For the acoustic phonon scattering one finds

3227 K 2 \?
af = G m)? <§W) : (146)
V27K 2 \?
i = 32V 2Ky <§W) , (147)
a(ac)
ay’ = -1, (148)
V2rm* Ka (2. 0\
a9 — 10gY T Rac Ly, (149)
22 h3 3

Concerning the non-polar optical phonon scattering it is also possible to get an analytical
expression for the production in terms of the modified Bessel functions of second kind

K — VT (z/2)
T r(v+3)

with ' the Gamma function.
After some algebra (the details are reported in Appendix A) one obtains up to first order
the following expressions

2\ "2 2427 (m*)¥2(hoonp)? 1 1
Cy = (—W) n(m )3 ( wnp) Kan(nB+_:|:_> €i§ X
+

/ exp(—z coshr) sinl?’ rdt, z,v > 0, (150)
0

3 h 2 2

hawn
< [exp(prp 7 20 ) - 1K) 3 (o). (1s1)

4 (2 \ Y221 (m")¥?(hwng)? 1 1
aﬂp) = 3 (§W> 73 = Knpz <nB + > F 5) et x
+

x [K2(8) F K1()], (152)

4 [2  21n(m*)¥2(hwnp)? 1 1

(np) np

algp = 3 §W 3 K”F’E (nB—i—E:FE)eiCx
+

x {3K2(¢) + 20 [K1() F K2(D]}, (153)
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(np)

(hp a1
= 12 154
aa i (154)

4 (2 \*? S 2xm* (honp)? 1 1
4P = 5(5v) T e (et 5w )
+

x [K2(0) (12F 9¢ + 4¢?) + K1(¢) (3¢ F 4¢9)]. (155)

The quadratic correction 6y, is given by

V-V 4209V s+ cPs. s, (156)

For the coefficientﬁg,) the interested reader is referred to [19].
Finally no analytical expressions are available for the scattering with impurities and one
has to resort to a numerical evaluation of the coefficients of the production matrix.

4. Numerical Methods for Hydrodynamical Models of Semiconductors and Simulation
of Electron Devices

The hydrodynamical model presented in the previous chapter is constituted by a hyperbolic
system of balance equations coupled with the Poisson equation for the electric potential. The
modelling of a realistic device introduces strong gradients in the initial electron density at
the junctions. The subsequent evolution of the system gives rise to non-linear waves, before
reaching a steady state. Then, the methods employed for the numerical solution of the govern-
ing equations must have certain qualities to ensure thatdfrectweak solution is captured

at the correct point in space and time. Moreover, the numerical schemes should not introduce
spurious features, like non-physical oscillations in the vicinity of strong gradients.

The computational strategies followed to get numerical solutions of such a set of equations,
solve at each time level the Poisson equation and then the hyperbolic part by considering
during the time step the electric field as a given external field. The main computational efforts
are due to the hyperbolic part of the set of equations representing the model because for the
Poisson equation standard schemes can be used.

Numerical integration of quasi-linear hyperbolic systems represents by itself an active
research area (see [58, 59]). It is well known that the solutions of quasi-linear systems suffer
loss of regularity and formation of shocks. In the last decade accurate shock capturing schemes
have been developed, suchmso schemes [60]. However, high order upwind-based shock
capturing schemes require the explicit knowledge of the characteristic speeds of the hyperbolic
system. In the case of the model presented in the previous section, it is not possible to obtain
analytical expressions for the eigenvalues and eigenvectors of the system, and it is therefore
not practical to use upwind-basedo schemes.

It is almost mandatory to resort to schemes that do not require an explicit analytical expres-
sion of the solution of the Riemann problem. Here we present a numerical scheme enjoying
such a property, well suited for the hydrodynamical models presented in the previous chapter.

The scheme has been proposed by Nessyahu and Tadmd64]. It uses Lax—Friedrichs
scheme as building block, corrected tayscL-type interpolation so that it becomes second
order accurate in smooth regionst scheme has been developed only for homogeneous
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systems. An extension of the method to systems that contain production terms has been
formulated for one-dimensional problems in [62] and applied to semiconductors in [16, 17,
46).

In the following sections we briefly present the scheme for one-dimensional problems.
Examples of numerical results are reported in the last section. The new features of these ap-
proaches is that they use methods suitable for hyperbolic systems with source terms and in this
particular case study, the solution is evolved as an unsteady problem marched to steady state,
preserving time as well as space accuracy. Therefore these codes could be used to investigate
the transient behaviour of the system from an academic and an engineering point of view.

Other numerical simulations have been performed by using a kinetic scheme and compared
with those obtained with theT scheme in [63]. An alternative valid scheme has been also
considered in [64, 65]. However, these latter results will not be reported here.

4.1. THE NESSYAHU-TADMOR SCHEME AND ITS EXTENSION TONON-HOMOGENOUS
HYPERBOLIC SYSTEMS

Let us consider a system of the form
oU + oF(U)
ot 0x

with U € R" andF : R" — R™.

The basic idea is to integrate first the relaxation system (relaxation step),

du
— =G, E), (158)
dr
and then the homogeneous system (convection step), using the output of the previous step as
initial condition
U IFWU)
dt ax

For the relaxation step an unconditionally stable second order scheme can be obtained by
analytical integration of the linearized relaxation equation, where linearization is obtained by
freezingthe coefficients and the electric field at time(see [16, 17, 46] for details). The
electric potential is computed by solving with standard procedure the tridiagonal system

€(@j41—20; +¢j—1) = —(Ax)* (Np — Na —n?)

and the electric field is obtained by the electric potential using finite differences.
NT scheme with a staggered grid is used for the convection step.
Each convection step has the form of predictor—corrector scheme

— G(U, E), (157)

0. (159)

n n / ’ 1/2 1/2
Uliyp= 30U+ UL + 53U, — Ul — MFUST? — FUT2), (160)

n+1/2 n /
Uit =Uj - 5F, (161)
wherei = Ar/Ax. The time stepAt must satisfy the stability condition

A -maxp(A(U(x, 1)) < 3, (162)

wherep (A(U (x, t))) is the spectral radius of the Jacobian matdx= 0 F/oU.
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Figure 2. Velocity (cm/s) vs. time (ps) forE = 10kV/cm, 30kV/cm, 50 kV/cm, 70kV/cm, 100 kV/cm,
120 kV/cm, 150 kv/cm.

This condition will ensure that the generalized Riemann problems with piecewise smooth
data at time,, will not interfere during the time stepz.

The values oU’/Ax and F;/Ax are a first order approximation of the space derivatives

of the field and of the flux, computed from cell averages by using Uniform Non-Oscillatory
reconstruction yNoO, see [60]),

Ui =MM(d;_12U 4+ MM(D;_1, D}),dj 12U — 3MM(D;, D;.1)), (163)
WhereD.,- = Uj+1 — 2U, + Uj—lv dj+1/2 = Uj+1 — Uj and

sign(x) - min(|x|, [y|)  if sign(x) = sign(y)

MM (x, y) = .
Y 0 otherwise

A similar procedure is used for computirg.
In order to couple the convection step with the relaxation step, it is convenient to make

two convection steps of step sizg /2, so that the solution is computed on the same grid. A

complete convection step of step sixe is obtained as a sequence of two intermediate steps
of step sizeAr/2.

The splitting technique presented above is first order in time. It is possible to obtain second
order accuracy in time by combining the two steps according to the following scheme [62, 66].
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Figure 3. Energy (eV) versus time (ps) for the same values electric field as in Figure 2.
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Figure 4. Energy flux (eV cm/sec) versus time (ps) for the same values of the electric field as in Figure 2.
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Figure 5. Schematic representation o& — n — n™ silicon diode.

Table 3. Length of the channel, doping concentration and applied voltage
in the test cases for the diode

Test# Channel length N7 Np Vo
L¢ (um) (x107em™3)  (x107cem™3)  (Volt)

1 0.4 5 0.02 2

2 0.3 10 0.1 1

3 0.2 10 0.1 1

Given the field at time,, (U", E"), the field at time,,, 1> iS obtained by

Uy=U"—-RWULE", A, Upy=3U"-1Uy,
U3:U2_R(U3v Env At)v U4:CAIU37
E" =PUs), U™ =U,—RU™ E"™, A1/2),
where R represents the discrete operator corresponding to the relaxationCstejs, the

discrete operator corresponding ta scheme, and?(U) gives the solution to Poisson’s
eqguation.

4.2. NUMERICAL RESULTS

In this section we test the hydrodynamical model presented in the previous section for silicon
semiconductors by considering first the problem of the overshoot and saturation velocity in
the bulk case and then by simulatinga— n — n* silicon diode that models the channel of

a MOSFET.
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Figure 6. Doping profile for the test case 1.

We have implemented (see [20]) only the linear model, up to first ordgrdnt the results
are quite satisfactory and some problems of regularity of the solution, related to the quadratical
closure moles, are avoided.

4.3. APPLICATION TOBULK SILICON

The physical situation is represented by a silicon semiconductor with a uniform doping con-
centration, we assume sufficiently low so that the scatterings with impurities can be neglected.
On account of the symmetry with respect to translations, the solution does not depend on the
spatial variables. The continuity equation gives= constant and from the Poisson equation
one finds thak is also constant. Therefore the remaining balance equations reduce to the
following set of ODEs for the motion along the direction of the electric field

d eE 2aeEG c c

qy_ ¢k (22— 20en) V + (22— 2020) 5, (164)
dr m* m* m* m*

d

EW = —eVE + Cy, (165)
d ()

ES = —eEG"Y 4+ c1V + 28, (166)

whereV andS are the component & andS along the electric field.
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Figure 7. Numerical results of the test case 1 after 5 ps in the parabolic band case (dashed line) and for the Kane
dispersion relation (continuous line).

As initial conditions for (164)—(166) we take

V(0) =0, (167)
W(0) = kg T, (168)
S(0) = 0. (169)

The stationary regime is reached in a few picoseconds.

The solutions of (164)—(166) for several values of the electric field are reported in Figures 2
(velocity), 3 (energy) and 4 (energy flux).

The typical phenomena of overshoot and saturation velocity are both qualitatively and
quantitatively well described (see [67] fig. 3.22 for a comparison with the results obtained by
MC simulations).

Similar results were reported in [19], but there a different modeling of the collision terms
has been considered and, moreover, instead to take into account all the intervalley and in-
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Figure 8. Numerical results of the test case 2 after 5 ps in the parabolic band case (dashed line) and for the Kane
dispersion relation (continuous line).

travalley scatterings, mean values of the coupling consaamid D, K have been introduced.

The inclusion of all the scattering (intervalley and intravalley) mechanisms improve notably
the results.

4.4. APPLICATION TOrnT —n —n™ SiLICON DIODE

As second problem we simulate a ballistit — n — n™ silicon diode (see Figure 5).

Then™ regions are 0.Lm long while the channel has different length. Moreover several
doping profiles will be considered according to the Table 3.

Initially the electron energy is that of the lattice in thermal equilibrium at the temperature
T, , the charges are at rest and the density is equal to the doping concentration

n(x,0) =no(x), W(x,0 =3kgTL, V(x,0=0 S(x0=0.
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Figure 9. Numerical results of the test case 3 after 5-ps in the parabolic band case (dashed line) and for the Kane
dispersion relation (continuous line).

Regarding the boundary conditions, in principle the number of independent conditions on
each boundary should be equal to the number of characteristics entering the domain. However,
we impose, in analogy with similar cases [16, 45] a double nhumber of boundary conditions.
More precisely, we give conditions for all the variables in each boundary, located=a0
andx = L,

n(0,t) = n(L,t) = Ng, (170)
3 3
—W(@O,t) = —W(L,t) =0, (171)
0x 0x
3 3
—V(©0,1) = —V(L,t)=0, (172)
0x 0x
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iS(O, 1) = iS(L,t) =0, 173)
0x 0x
(0 =0 and ¢(L) =W, (174)

whereV, is the applied bias voltage. In all the numerical solutions there is no sign of spuri-
ous oscillations near the boundary, indicating that the conditions (170)—(173) are in fact
compatible with the solution of the problem.
The doping profile is regularized according to the function
X — X1

no(x) =ng—dp (tanh — tanhx — xz),
N N

wheres = 0.01um, ng = ng(0), dg = no(1l — ND/NE{)/Z, x1 =021um, andx, = x1 + L¢
with L. channel length. The total length of the devicd.is= L. + 0.2 um. In Figure 6 the
doping profile for the test case 1 is plotted.

A grid with 400 nodes has been used. The stationary solution is reached within a few
picoseconds (about five), after a short transient with wide oscillations.

As first case we consider the test problem 1 (length of the channel 0.4 micronyyvith
2 \olts. In Figure 7 (continuous line) the stationary solution (after 5 ps) is plotted. At variance
with the numerical results obtained in [16] for the parabolic case by using a quadratic closure
in §, our numerical solutions do not present irregularities. This can be probably ascribed to the
absence of the nonlinearities in the dissipative variables.

If we compare the results with those reported in [9] (Figures 1-4) and obtained by solving
with Monte Carlo method the Boltzmann—Poisson system, there is a good agreement in all the
variablesw, vV andS.

The simulation for the parabolic band approximation is also shown (Figure 7 dashed line),
but it is evident, like in the bulk case, that the results are rather poor.

The other test cases have been numerically integratedWyith 1 Volt (Figures 8, 9). For
these cases Monte Carlo data is not at our disposal, but the behaviour of the solution looks
again physically reasonable and encouraging: the spurious spike across the second junction is
here less apparent than several other hydrodynamical models. The results with the parabolic
band are again rough when compared with those obtained in the non-parabolic case.
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